

1 AND

THE SCIENCE OF CHEMICAL CHARACTERISATION

Ser Tel

Sven Even Borgos, SINTEF ENM2017, April 3rd 2017

1

Analytical aspects of nanomedicines

Borgos, S.E.F., *Characterization Methods: Physical and Chemical Characterization Techniques.* Pharmaceutical Nanotechnology: Innovation and Production, 2 Volumes, 2016.

Mass spectrometry – a good tool

Sensitivity + Specificity + Selectivity (+ Wide Applicability !)

- Low- or sub-ng/ml LOD for most compounds
- Can quantify even in very complex samples
- Can verify molecular integrity
- Can monitor closely related compounds simultaneously
- Can see most organic molecules (and inorganic elements)

NPs we've worked on include:

- Polymers (PACA PU PLGA chitosans)
- Lipid NPs
- Liposomes

3

• Inorganic NPs

Example: EUNCL-011

- Liposomal irinotecan (prodrug)
- Irinotecan → SN-38 → SN-38glucuronide ('SN-38-G') (mainly)

The following assays were chosen to run for EUNCL-011 sample:

- Drug loading (EUNCL_PCC_30)
- Free/bound drug (EUNCL_PCC_31)
- Lipid composition (EUNCL_PCC_32)
- Drug release in complex media

Method: LC-MS/MS

Total drug loading

- Dissolve/dilute NPs in methanol (triplicate)
- Isotope ISTDs: IRT-d10 and SN-38-d3

- Quantified IRT: 4.33 mg/ml, std.dev. 0.06 mg/ml (spec.: 4.3 mg/ml)
- Also: Found SN-38 in EUNCL-011; 1.47 μg/ml (i.e. < 0.4% of IRT)
 - Spontaneous decarboxylation?
 - Note much higher potency of SN-38

Free/bound drug

- Quantification of IRT in filtrate gives concentration of
 - 39.7 $\mu g/ml$ (low speed), std.dev. 2.48 $\mu g/ml$
 - 40.7µg/ml (high speed), std.dev. 0.78 µg/ml
- Concentration in total drug sample: 4.33 mg/ml, std.dev. 0.059 mg/ml
- Provided we can assume equilibrium unchanged upon dilution: 0.94 % of IRT (rel. to high speed spin) exists as free drug in EUNCL-011.

Actual drug conc. experienced in vitro

- Irinotecan added at 333µM (NP or free)
- Only ~ 3 % irinotecan is observed as in solution after 48 hours
- Metabolism to SN-38 to SN-38G is observed in LLC-PK1 cells (not HepG2)

		Irinotecan J	<u>ICI</u> (μM)	SN-38 (μM)		SN-38G (nM)	
Sample	Exposed to	24 h	48 h	24 h	48 h	24 h	48 h
Analysis of di	stribution of irinote	can, SN-38 and S	5N-38G in as	say wells wit	h LLC-PK	1 cells	
Unfiltered	EUNCL-011	329.9	335.0 -	0.820	1.899		2.9
aqueous phase	Irinotecan	191.7	188.9	0.526	0.696	NA	NA
	SN-38	0.0071	NA	9.448	10.806		458.2
Filtered	EUNCL-011	13.4	9.9	0.092	0.111	1.7	1.9
aqueous phase	Irinotecan	159.0	174.4	0.222	0.237	NA	NA
	SN-38	0.0022	0.0026	2.980	2.827	195.9	232.9
Extracted	EUNCL-011	1,1	13,3	0,000	0,005	NA	NA
cell layer	Irinotecan	36,4	36,9	0,002	0,006	NA	NA
	SN-38	0,0018	0,0034	0,057	0,147	3 ,2	7,7

8

Challenge: Endotoxin (LPS)

- Major issue with candidate nanomedicines
- An unconditional showstopper
- Current assays (LAL) are enzyme-based
 - Technically demanding
 - Prone to nanoparticle-specific problems (e.g. encapsulated endotoxin)
- Direct detection would be ideal
 - ...at least to complement functional assays like LAL

Challenge: Surface functionalities

- PEGylation degree and distribution
- Hydrophobicity
- Protein corona and its use as a tool for targeting (?)

- Protein ligands and corona can be analysed as peptides digested/released from the surface
- PEGylation analysis is hard but important!

He to the top

- NMR
- TOF-SIMS / MALDI-MS
- Chromatography (?)

SINTEF

Drug release in complex media

- Multiple equilibria exist
- Existing: Dialysis, SEC/IEX/SPE, ultracentrifugation, Liq-liq extraction, ultrafiltration
- Process induced drug release a general concern
- Dual stable isotope method the gold standard?
- Based on (bio)chemical equivalence of isotopes (²H vs ¹H, ¹³C vs ¹²C)

S. Skoczen et al. / Journal of Controlled Release 220 (2015) 169-174

🕥 SINTEF

And suddenly...

- EUNCL-008 liposomal doxorubicin (target 2 mg/ml)
- Drug loading analyses by LC-MS/MS gave slight shift in retention cmp. to doxorubicin standard

Dau

DoxR

- ...and small shift in MS/MS fragmentation pattern (although parent ion is actually present)
- Turns out it contains wrong API!

1				1+ 528. <u>1</u> 8653			×10 ⁸
							8-
							1
							6-
							24
			1+				4-
			529.18976				
							2.
533, 15508		1+					×4
533.65674		550.19515					
	 						0-
		530	529	578	527	576	

0

ö

OH

òн

Doxorubicin

=0 OH

NH₂

OH

Meas. m/z	#	Ion Formula	Score	m/z	err [mDa]	err [ppm]	e ⁻ Conf	N-Rule	Adduct
528,186531	1	C27H30NO10	100	528,1864	-0,1	-0,2	even	ok	M+H

‴он`

Daunorubicin

Thanks to: Anders Brunsvik Astrid Hyldbakk Geir Klinkenberg Vu To Kai Vernstad

EU-NCL consortium